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Abstract Trigonometrically-fitted methods have been largely used for solving
second-order differential problems, and particularly for solving the radial Schrödinger
equation (see for instance Alolyan and Simos in J Math Chem 50:782–804, 2012;
Simos in J Math Chem 34:39–58, 2003, 44:447–466, 2008; Vigo-Aguiar and Simos
in J Math Chem 29:177–189, 2001, 32:257–270, 2002 and the references therein con-
tained). It is well-known that for periodic or oscillatory problems, trigonometrically
fitted methods are more efficient than non-fitted methods. A large number of differ-
ent approaches have been considered in the scientific literature to obtain analytical
approximations to the frequency of oscillation in case of periodic solutions, which
are valid for a large range of amplitudes of oscillation. However, these techniques
have been limited to obtaining only one or two iterates because of the great amount
of algebra involved. In this paper we consider the use of a trigonometrically fitted
method to obtain numerical approximations for the solutions. This yields very accept-
able results provided that the approximation of the parameter of the method is done
with great accuracy. Many trigonometrically fitted methods have been reported in
the literature, but there is no decisive way to obtain the optimal frequency value. We
present a strategy for the choice of the parameter value in the adapted method, based
on the minimization of the sum of the total energy error and the local truncation errors
in the solution and in the derivative. We include an example solved numerically that
confirms the good performance of the strategy adopted.
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1 Introduction

Many nonlinear phenomena can be described in terms of nonlinear oscillators. Perhaps
one of the best known nonlinear systems is the simple pendulum (a particle of mass m
attached to a wall by a string moving on a surface without friction), in which for small
angle oscillations the periodic motion is harmonic; nevertheless, for large oscillations
the period depends on the amplitude [6].

Nonlinear oscillators appear in quantum mechanics, biology, optics, and of course,
in classical mechanics. Recently, a lot of work has been devoted to obtaining approxi-
mate analytical solutions to nonlinear oscillators, and their periods of vibration. Most
of the procedures consist of transforming the given second order initial-value problem
into an infinite sequence of linear inhomogeneous second-order initial-value prob-
lems. A survey of the these approaches with many references can be found in [7].
However, for most cases the application of these methods leads to very complicated
sets of algebraic equations with highly complex nonlinearity. In this paper we consider
the use of trigonometrically fitted methods for solving this kind of problem, but in the
sense that an appropriate strategy is used to obtain the value of the parameter involved
with great accuracy.

Let us consider a nonlinear oscillator whose trajectory x(t) is a solution of Newton’s
equation of motion given in the form

ẍ = −∇(V (x)) (1)

where the potential-energy function V (x) satisfies the condition that f (x) =
− d V (x)

dx
for a conservative force f (x). As is usual in classical mechanics, the dot

stands for the derivative with respect to time. In the formulation of the above dif-
ferential equation some constants could appear, but we set them equal to one. This
does not change the essential features of the solutions in any way (see [8]). The solu-
tions of this equation may show different types of behavior. In the case of bounded
motion, assuming that the equilibrium position takes place at x = 0, the amplitude is
the largest distance from this equilibrium position. If f (x) does not have a dominant
term proportional to x , then the equation in (1) is called “truly nonlinear oscillator”
(see [8]).

An important feature in the case of a periodic solution of a nonlinear oscillator
is the period: that is, the smallest real value T > 0 for which x(t) = X (t + T ). It
is important to note here that the frequency of the adapted method (the parameter ω

that will appear later) is in general different from the angular frequency of the motion
Ω = 2 π

T (see [9]). In this context, the accurate determination of the appropriate value
for ω is highly desirable.
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2 A formula for the period

In order to determine whether a given differential problem has periodic solutions or
not, it is convenient to reformulate the differential equation in (1) as an equivalent
system of two first-order equations

ẋ = y , ẏ = f (x) (2)

where the variables x and y define the phase-space. The equilibrium solutions are of
the form

x(t) = x̄ , y(t) = 0

where x̄ are constant solutions of f (x) = 0. If we consider initial values x(0) =
x0, y(0) = y0, for t ≥ 0 the points (x(t), y(t)) describe a trajectory in the phase-
space, with x(t) and y(t) the corresponding solutions of the IVP with equations in
(2). The closed curves in the phase-space plane correspond to periodic solutions. The
differential equation of the trajectories is easily deduced from (2) and is (see [8])

dy

dx
= f (x)

y
.

Taking initial conditions x(0) = A, y(0) = 0, after integrating we obtain the first
integral

1

2
y2 + V (x) = V (A) = K

where the constant total energy function is given by H(x, y) = 1
2 y2 + V (x).

In the case of a periodic motion, considering the values on the trajectory with y = 0,
which prove to be the two values x+ and x− for which V (x+) = V (x−) = K , the
period of the motion is given by (see [10])

T = √
2

∫ x+

x−

dx√
K − V (x)

(3)

and thus the angular frequency is Ω = 2 π

T
. In a few cases it is possible to solve

the integral analytically and thus obtain the exact period, but in most cases only an
approximate solution can be found.

For solving the integral in (3) numerically it is appropriate to make a change of the
variable, setting

x = x+ + x−
2

+ x+ − x−
2

cos θ

which transforms the above integral into a new one over the interval [0, π ]. In general
the resulting integral must be solved numerically, for which there are many highly
effective quadrature formulas.
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3 Trigonometrically-fitted methods

One of the most useful procedures for the construction of numerical methods that
approximate the solution of second-order initial-value problems is the adaptation tech-
nique (of which the most used are exponentially or trigonometrically fitted). In partic-
ular, when the solution exhibits periodic or oscillatory behavior the trigonometrically
fitted methods are much more efficient than non-fitted methods, with similar costs.

These trigonometrically fitted methods are obtained by demanding that they be
exact for any linear combination of the functions

{1, t, t2, . . . , cos(ωt), sin(ωt), . . .} .

Methods of this type have recently been developed by Simos and Vigo-Aguiar [11],
Franco [12] and Fang and Wu [13].

In all of the above-cited papers the value for the frequency ω that appears in
the numerical methods is chosen close to the exact frequency of the true solution
(the angular frequency Ω) or it is assumed that the frequency value is known in
advance. In fact, for the simplest orbital problem, ẍ + Ω2x = 0, by taking ω = Ω

the trigonometrically-fitted methods are exact, which means that the errors are due
only to roundoff considerations. But as ω departs farther from the exact value (even for
small deviations), the results become worse than those for the corresponding non-fitted
methods. The question of how to choose the frequencies on the trigonometrically-fitted
(and exponentially-fitted) techniques is a very difficult task. In [9] there is an empirical
study showing the strong dependence of the frequency ω on different parameters. For
solving the initial-value problem corresponding to the differential equation in (1) we
shall consider a two-step trigonometrically-fitted method given by the two formulae

xn+1 = xn + h ẋn + α−1 ẍn−1 + α0 ẍn (4)

ẋn+1 = ẋn + β−1 ẍn−1 + β0 ẍn + β1 ẍn+1 (5)

where the coefficients are given by

α−1 = 1 − hω csc(hω)

ω2 α0 = hω
(
csc(hω) − tan

( hω
2

)) + 1 − 2 cos(hω)

ω2

β−1 = hω − 2 tan
( hω

2

)
2ω − 2ω cos(hω)

β0 = hω cos(hω) − sin(hω)

ω(cos(hω) − 1)

β1 = 2 sin(hω) − hω − 2 tan
( hω

2

)
2ω(cos(hω) − 1)

They may be seen in a simpler form via the transformations

csc(hω) = ν , 1 − cos(hω) = μ , tan

(
hω

2

)
= τ
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from which the resulting coefficients become

α−1 = 1 − hων

ω2 α0 = 2μ − hωτ

ω2 − α−1

β−1 = hω − 2τ

2ωμ
β0 = 1/ν + hω(μ − 1)

ωμ
β1 = h − β0 − β−1 .

As is commonly used in numerical methods, h denotes the stepsize and xn is the
approximation for x(tn), where the grid points are tn = t0 + n h. The above method is
exact when the solution of the differential equation is in the vector space spanned by

{1, t, cos(ωt), sin(ωt)} ,

and the local truncation errors for each of the formulae in (4–5) result respectively in

L(x(tn); h) = x(tn+1) − xn+1 = 1

8
h4

(
x (4)(tn) + ω2 ẍ(tn)

)
+ O(h5)

L(ẋ(tn); h) = ẋ(tn+1) − ẋn+1 = − 1

24
h4

(
x (5)(tn) + ω2x (3)(tn)

)
+ O(h5) ,

indicating that the method is of second order accuracy.
Note that the above method is explicit, since for the evaluation of the term ẍn+1 =

f (xn+1) in the formula (5) we use the value of xn+1 which was previously obtained
with the formula in (4).

4 Strategy for selecting the frequency

As was shown in [9], choice of the frequency in trigonometrically fitted methods
is a fundamental question, especially if long-term prediction is considered. For the
harmonic oscillator, the frequency of a trigonometrically fitted method is the same
as the angular frequency of the solution of the initial value problem. However, for
nonlinear problems the frequency of the method is, in general, different from the
frequency of the true solution. The frequency choice is crucial, owing to the extreme
sensitivity of the numerical method with regard to this choice.

The strategy adopted is based on the minimization of a function that depends on
the local errors and the error of the total energy in an selected interval [0, tF ] where
the final point tF is chosen as Nc times the period: that is, tT = Nc × T . We consider
the function F(ω) given by

F(ω) = |x(tF ) − xF | + |ẋ(tF ) − ẋF | + |K − H(xF , ẋF )|

where xF , ẋF are the approximate values obtained with the numerical method at the
point tF , H(x, y) is the total energy function, and K = H(x0, ẋ0) is the constant value
corresponding to the orbit passing through the point (x0, ẋ0) determined by the initial
values. This function measures the sum of the absolute errors in the solution, in the
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Fig. 1 Potential energy function and phase-plane for the Eq. (6). The blue line is the orbit corresponding
to (x0, ẋ0) = (0, 1/5). The red line is the separatrix (Color figure online)

derivative and in the total energy at the final point, after performing the integration on
[0, tF ].

Using the Golden Section Search technique (see [14]) we obtain the minimum of the
function F in a chosen interval enclosing the angular frequency Ω , and this minimum
is considered as the optimum value for the parameter, termed ωopt .

5 Numerical example

We illustrate the procedure in the above section considering the problem given by

ẍ = − sin(20x) , x(0) = 0 , ẋ(0) = 1

5
, t ∈ [0, 60] (6)
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Fig. 2 Typical plot of the function F(ω) whose minimum ωopt is found using the Golden Section Search
technique

Table 1 Maximum absolute errors for the problem in (6) in [0, 60], for different values of the parameter
ω using the method in (4–5)

h = T
100 = 0.01484412473422391 Ω=4.232775875760037

ω Err(x) Err(ẋ)

4.264022254339189(ωopt ) 2.31 × 10−7 1.01 × 10−6

Ω 2.71 × 10−5 1.09 × 10−4

1 1.75 × 10−3 7.08 × 10−3

which is a periodic nonlinear oscillator with angular frequency and period

Ω = 4.232775875760037 , T = 1.4844124734223914 . (7)

The phase plane is shown in Fig. 1.
Choosing Nc = 4 and an initial searching interval for ω given by [3, 11/2], the

minimum of the function F(ω) using the Golden Section Search technique results in
ωopt = 4.264022254339189. Figure 2 shows the plot of the function F(ω) with the
minimum ωopt .

In Table 1 the maximum of the absolute errors for the solution and the derivative,
Err(x) and Err(ẋ) are considered for h = T/100. We see that small variations in the
parameter lead to very different results in terms of accuracy and that ωopt is the best
choice for solving the problem.

We have integrated the above problem using the method in (4–5) taking as the value
for the parameter the ωopt . In Fig. 3 we show the absolute error of the solution and
the error of the Total Energy for the present method compared with a second order
symplectic partitioned Runge–Kutta method using the same number of steps (4044).
It is clear that the proposed method performs better than the symplectic partitioned
Runge–Kutta method.
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Fig. 3 Absolute error in the solution [up] and total energy error [down] for the problem in (6). Left
second order symplectic partitioned R–K method. Right method in (4–5). Number of steps: 4044; ωopt :
4.264022254339189

6 Conclusions

In trigonometrically-fitted methods the determination of the parameter (usually known
as the frequency of the method) is a critical issue, as was shown in the article by
Ramos and Vigo-Aguiar [9]. Knowledge of an estimation of the unknown frequency
is needed in order to apply the numerical method efficiently, since its coefficients
depend on the value of this parameter. Usually, the value for the frequency ω that
appears in trigonometrically-fitted methods is chosen to be equal or close to the angu-
lar frequency Ω , but this is not necessarily the best choice, as has been shown in the
numerical examples.

In order to provide an estimate of the parameter, some attempts have been made in
the literature, based on the minimization of the leading term of the local truncation error
(see [15,16]). With this technique an order of accuracy may be gained with respect to
the underlying multistep method, but this strategy shows that the frequencies obtained
do not reflect the solution itself.

In this paper we apply a trigonometrically-fitted method for solving nonlinear peri-
odic oscillators, and present a strategy for the practical estimation of the parameter,
based on the minimization of the sum of the local truncation errors and the total energy
error of the system at the final point of a selected interval corresponding to a few times
the period. Although here we have presented only a numerical example, the procedure
has been tested on different problems, observing its good performance in all cases.
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